
TypeScript 生成器模式讲解和代码示例
生成器是一种创建型设计模式, 使你能够分步骤创建复杂对象。
与其他创建型模式不同, 生成器不要求产品拥有通用接口。 这使得用相同的创建过程生成不同的产品成为可能。
复杂度:
流行度:
使用示例: 生成器模式是 TypeScript 世界中的一个著名模式。 当你需要创建一个可能有许多配置选项的对象时, 该模式会特别有用。
识别方法: 生成器模式可以通过类来识别, 它拥有一个构建方法和多个配置结果对象的方法。 生成器方法通常支持方法链 (例如 someBuilder.setValueA(1).setValueB(2).create()
)。
概念示例
本例说明了生成器设计模式的结构并重点回答了下面的问题:
- 它由哪些类组成?
- 这些类扮演了哪些角色?
- 模式中的各个元素会以何种方式相互关联?
index.ts: 概念示例
/**
* The Builder interface specifies methods for creating the different parts of
* the Product objects.
*/
interface Builder {
producePartA(): void;
producePartB(): void;
producePartC(): void;
}
/**
* The Concrete Builder classes follow the Builder interface and provide
* specific implementations of the building steps. Your program may have several
* variations of Builders, implemented differently.
*/
class ConcreteBuilder1 implements Builder {
private product: Product1;
/**
* A fresh builder instance should contain a blank product object, which is
* used in further assembly.
*/
constructor() {
this.reset();
}
public reset(): void {
this.product = new Product1();
}
/**
* All production steps work with the same product instance.
*/
public producePartA(): void {
this.product.parts.push('PartA1');
}
public producePartB(): void {
this.product.parts.push('PartB1');
}
public producePartC(): void {
this.product.parts.push('PartC1');
}
/**
* Concrete Builders are supposed to provide their own methods for
* retrieving results. That's because various types of builders may create
* entirely different products that don't follow the same interface.
* Therefore, such methods cannot be declared in the base Builder interface
* (at least in a statically typed programming language).
*
* Usually, after returning the end result to the client, a builder instance
* is expected to be ready to start producing another product. That's why
* it's a usual practice to call the reset method at the end of the
* `getProduct` method body. However, this behavior is not mandatory, and
* you can make your builders wait for an explicit reset call from the
* client code before disposing of the previous result.
*/
public getProduct(): Product1 {
const result = this.product;
this.reset();
return result;
}
}
/**
* It makes sense to use the Builder pattern only when your products are quite
* complex and require extensive configuration.
*
* Unlike in other creational patterns, different concrete builders can produce
* unrelated products. In other words, results of various builders may not
* always follow the same interface.
*/
class Product1 {
public parts: string[] = [];
public listParts(): void {
console.log(`Product parts: ${this.parts.join(', ')}\n`);
}
}
/**
* The Director is only responsible for executing the building steps in a
* particular sequence. It is helpful when producing products according to a
* specific order or configuration. Strictly speaking, the Director class is
* optional, since the client can control builders directly.
*/
class Director {
private builder: Builder;
/**
* The Director works with any builder instance that the client code passes
* to it. This way, the client code may alter the final type of the newly
* assembled product.
*/
public setBuilder(builder: Builder): void {
this.builder = builder;
}
/**
* The Director can construct several product variations using the same
* building steps.
*/
public buildMinimalViableProduct(): void {
this.builder.producePartA();
}
public buildFullFeaturedProduct(): void {
this.builder.producePartA();
this.builder.producePartB();
this.builder.producePartC();
}
}
/**
* The client code creates a builder object, passes it to the director and then
* initiates the construction process. The end result is retrieved from the
* builder object.
*/
function clientCode(director: Director) {
const builder = new ConcreteBuilder1();
director.setBuilder(builder);
console.log('Standard basic product:');
director.buildMinimalViableProduct();
builder.getProduct().listParts();
console.log('Standard full featured product:');
director.buildFullFeaturedProduct();
builder.getProduct().listParts();
// Remember, the Builder pattern can be used without a Director class.
console.log('Custom product:');
builder.producePartA();
builder.producePartC();
builder.getProduct().listParts();
}
const director = new Director();
clientCode(director);
Output.txt: 执行结果
Standard basic product:
Product parts: PartA1
Standard full featured product:
Product parts: PartA1, PartB1, PartC1
Custom product:
Product parts: PartA1, PartC1